\qquad
\qquad Period: \qquad

Use the textbook (page 306 and chapter 6) to write the definitions.
Parallelogram: \qquad
Rhombus: \qquad
Rectangle: \qquad
Square: \qquad
\qquad
I sosceles Trapezoid: \qquad
Kite: \qquad
Place a checkmark in the column if the characteristic is always true for each quadrilateral name. Answer the question/directions for the last 3 rows.

	Property	Parallelogram	Rectangle	Rhombus	Square	Trapezoid	Isos Trap	Kite	
Parallel sides	Both pairs of opposite sides \|								
	Exactly 1 pair of opposite sides \|								
Congruent sides	All sides \cong								
	Both pairs of opposite sides \cong								
	2 pairs of adjacent sides \cong (but the pairs are not \cong to each other)								
	Exactly 1 pair of opposite sides \cong								
Supplementary angles	All pairs of consecutive angles suppl								
	Exactly 2 pairs of consecutive angles suppl								
Congruent angles	All angles 90° (all sides \perp)								
	Both pairs of opposite angles \cong								
	Exactly 1 pair of opposite angles \cong								
	2 pairs of adjacent angles \cong (but the pairs are not \cong to each other)								
Diagonals	Diagonals bisect each other								
	Diagonals are \cong								
	Diagonals are \perp								
	Diagonals bisect opposite angles								
	Exactly 1 diagonal bisects the other diagonal								
	Exactly 1 diagonal bisects opposite angles								
Symmetry	How many lines of symmetry?								
	What degree angle of rotational symmetry?								
Drawing	Sketch the quadrilateral:								

The Quadrilateral Family Tree

Directions:
In each of the figures above, write the name of the quadrilateral which corresponds to it. Each of the following should be used exactly once: PARALLELOGRAM, KITE, SQUARE, QUADRILATERAL, TRAPEZOID, RECTANGLE, ISOSCELES TRAPEZOID, and RHOMBUS.

Explanation:

Following the arrows: The properties of each figure are also properties of the figure which follows it (passing on "genes" to the "children").
Reversing the arrows: Every figure is also the one which precedes it (shares the "last name" of the "parent").
Extension:
Label each figure with markings (congruency marks, parallel, right angles, etc.) that correspond with its definition.

The Quadrilateral Venn Diagram
Write the names of the quadrilaterals that correspond with sections \#1-8.
Overlapping circles create sections that have the properties of both circles.
Also, a circle that is completely inside a larger circle has all the properties of the larger circle.

\qquad
HW - Applying Properties of Special Parallelograms \qquad Period \qquad
(1-5) Given parallelogram TAXI, solve for x, y, and/or z. Also, state what property of the parallelogram that you are using (example: opposite sides are congruent)

1. $A X=3 y ; T I=2 y+10$

2. $m \angle T A X=2 y-5 ; m \angle T X=3 y-20$

3. $A M=2 x^{2}+2 x-15 ; I M=x^{2}+10 x+5$

4. $A T=7 y+z ; X I=y+28 ; T I=y+z ; \quad A X=5$

5. $m \angle T I X=2 z+y ; m \angle T A X=z+20 ; m \angle A T I=z-y$

In problems 6 and 7 , find x and y so the KMNO is a parallelogram.
6. $K M=x+y ; O N=3 x-4 y ; m \angle M K N=x+5 ; m \angle K N O=2 x-10$

7. $m \angle K O M=6 y+1 ; m \angle K M O=3 x+2 ; m \angle M O N=2 x+8 ; m \angle O M N=4 y+7$

In the diagram for problems $8-11, Q R S T$ is a rectangle and QZRC is a parallelogram.
8. If $m \angle R C S=35$, find $m \angle R T S$.

10. If $R T=x^{2}$ and $Q C=4 x-6$, what is the value of x ?

9. If $m \angle Q R T=m \angle T R S$, find $m \angle T C Q$. Z

11. $R Z=6 x, Z Q=3 x+2 y$, and $C S=14-x$. Find the values of x and y. Is QZRC a "special" parallelogram? If so, what kind?

Use rhombus ABCD for problems 12-17
12. If $m \angle B A F=28, m \angle A C D=$ \qquad .
13. If $m \angle A F B=16 x+6, x=$ \qquad .
14. If $m \angle A C D=34, m \angle A B C=$ \qquad .
15. If $m \angle B F C=120-4 x, x=$ \qquad .
16. If $m \angle B A C=4 x+6$ and $m \angle A C D=12 x-18, x=$ \qquad .
17. If $m \angle D C B=x^{2}-6$ and $m \angle D A C=5 x+9, x=$ \qquad
18. $A B C D$ is a square. $A B=5 x+2 y$, $A D=3 x-y$, and $B C=11$. Find x and y.

19. A contractor is measuring for the foundation of a building that is to be 85 ft by 40 ft . Stakes and string are placed as shown.
The outside corners of the building will be at the points where the strings cross. He then measures and finds $W Y=93 \mathrm{ft}$ and $X Z=94$ ft . Is WXYZ a rectangle? If not, which way should stakes E and F be moved to made $W X Y Z$ a rectangle?

Name \qquad Date \qquad Period \qquad
Geometry WS -Trapezoids and Kites

Identify the quadrilateral based on the given information in the diagram or description. Given information includes right angle symbols, congruent segment marks, congruent angle marks, and parallel marks.

Do NOT assume that pictures are drawn to scale.

\qquad 1. In kite $\mathrm{EFGH}, \mathrm{m} \angle \mathrm{FEJ}=25^{\circ}$, and $m \angle F G J=57^{\circ}$. Find each measure. $m \angle G F J=$ \qquad $m \angle J F E=$ \qquad $m \angle G H E=$ \qquad	\qquad 2. Find $m<y$
\qquad 3. $R T=24$ and $Q P=10$. Find $P S$.	\qquad 4. Find $S T$.
\qquad 5. In kite $P Q R S, m \angle Q R T=45^{\circ}$, and $m \angle R S T=30^{\circ}$. If $R T=7$, find the perimeter of the kite.	\qquad 6. In kite $P Q R S, m \angle Q R T=40^{\circ}$ and $m \angle R S T=35^{\circ}$. If $R T=7$, find the perimeter of the kite.

and $\mathrm{m} \angle \mathrm{VYZ}=49^{\circ}$. Find each measure.
\qquad Date \qquad Period \qquad
Geometry WS -Quadrilateral Word Problems

Solve each problem. Round segment lengths to the nearest tenth and angle measures to the nearest degree.

\qquad 1. In rectangle $P Q R S, m \angle 1=50^{\circ}$. What is $m \angle 2$?	\qquad 2. What are the coordinates of the intersection of the diagonals of this quadrilateral?
\qquad 7. In parallelogram $A B C D$, what is $\mathrm{m} \angle \mathrm{BDC}$?	8. $A B C D$ is a rhombus. What is $m \angle C B D$?
\qquad 18. A riser is designed to elevate a speaker. The riser consists of four trapezoidal sections that can be stacked on top of the other to produce trapezoids of varying heights. All of the stages have the same height. If all risers are used, the width of the top of the riser is 10 feet. a) If only the bottom two risers are used, what is the width of the top of the resulting riser? b) What would be the width of the top of the resulting riser is the bottom three risers are used?	\qquad 19. In the design, eight isosceles trapezoids surround a regular octagon. What is the measure of $\angle \mathrm{B}$ in trapezoid $A B C D$?

enclose his deck. Using the information on the to
diagram and assuming the top and bottom are
parallel, what is the measure of angle x ?
\qquad and Linear Equations (from textbook page 308 \# 13-18) Date: \qquad Period:

Determine the most precise name for each quadrilateral. Justify your answer with the following steps:
a. Plot the points and connect them
b. Make a conjecture (an educated guess)
c. Write down the WTP (what to prove) using the definitions on pg 306
d. Show work to prove the WTP
a. To prove parallel sides, calculate their \qquad (or count \qquad over \qquad) and see if they are \qquad -.
b. To prove right angles, show the sides are \qquad by calculating their \qquad and seeing if they are \qquad _.
c. To prove congruent sides, use the \qquad (or make a right triangle along the grid and use the \qquad Theorem).

Find the equation of line $\stackrel{\rightharpoonup}{A D}$
and the perpendicular bisector of $\overleftrightarrow{A D}$

Conjecture:

\qquad
WTP: Opposite \qquad are \qquad (since it's also a \qquad _)

AND \qquad sides

AND does not have \qquad angles (since it's not a \qquad Work:
14. $\mathrm{W}(-1,1), X(0,2), Y(1,1), Z(0,-2)$

Conjecture: \qquad
WTP: \qquad
Work:

Find the equation of the diagonal $\overrightarrow{W Y}$
and the diagonal $\overrightarrow{X Z}$
15. J $(2,1), K(5,4), L(7,2), M(2,-3)$

Name the bases
and find the equation of the midsegment.

Conjecture: \qquad
WTP: \qquad
AND does not have \qquad
Work:

Find the equation of the line from V to the midpoint of $\overline{R S}$.

Find T so that NTQR is a parallelogram.
Then find the equations of the lines $\stackrel{\rightharpoonup N T}{ }$ and $\overrightarrow{T Q}$.
18. $E(-3,1), F(-7,-3), G(6,-3), H(2,1)$

Find the equation of the altitude from E to $\overrightarrow{F G}$
91. $W(5,4), X(3,-6), Y(0,-10), Z(2,0)$

Find the equation of the altitude from X to $\overline{\mathrm{YZ}}$

Conjecture: \qquad
WTP: Does not have \qquad
(since it's not a or a \qquad _)

AND does not have \qquad (since it's not a \qquad).

Work: OMIT ©

Conjecture: \qquad
WTP: \qquad AND
Work:

Conjecture: \qquad
WTP: \qquad
AND does not have \qquad
AND does not have \qquad
Work:

Geometry-GT/PreAP
Chapter 6 Review - Quadrilaterals

Name \qquad Date \qquad Period \qquad
Find each of the following values.
Use parallelogram GRAM for problems 1-4.

_1. $G A=3 x-10$ and $G P=x+20$. Find x.	
\qquad 2. $m \angle G M R=37^{\circ}$ and $m \angle A M G=95^{\circ}$, find $\mathrm{m} \angle \mathrm{GRM}$.	_3. $m \angle R G M=75^{\circ}$, find $m \angle G M A$.
$\begin{aligned} & x=\text { 4. } R A=2 x+y, G R=3 x-y \text {, find } x \text { and } y . \\ & y= \end{aligned}$	

Use rectangle RECT for problems 5-8.
5. If $T A=3 x-7$ and $A C=2 x+2$, find x.

Use rhombus RHOM for problems 9-11.
\qquad 9. If $M O=24, M R=4 x+2 y+2$, and $R H=5 x-y+14$, find x and y.
$y=$ \qquad

10. If $R O=24$ and $M H=10$, find $M R . \quad$ 11. If $m \angle 7=39^{\circ}$, find $m \angle 2$.

Use square SQUA for problems 12-14.
12. If $A U=x^{2}+2$ and $S A=5 x-4$, find x.

Use trapezoid TUVW with midsegment XY for problems 15-17.
15. $\mathrm{m} \angle \mathrm{V}$
16. $T U=15, W V=33$, find $Z Y$.

17. $T U=x-12, Z Y=x+15$, and $W V=3 x-8$. Find x.

Use isosceles trapezoid TRAP for problems 18-20.
\qquad 18. Find $\mathrm{m} \angle 1$.
\qquad 19. Find $\mathrm{m} \angle 7$.
\qquad 20. Find $\mathrm{m} \angle 3$.

In problems 21-23, if there is enough information to state that the quadrilateral is a parallelogram give the reason. Write none if there is not enough information to state that the quadrilateral is a parallelogram.
21. E is the midpoint of $\overline{A C}$ and $\overline{B D}$.
22. $\angle 2 \cong \angle 6$ and $\angle 3 \cong \angle 7$

23. $\angle 8 \cong \angle 4$ and $\overline{A D} \cong \overline{B C}$
27. Find the coordinates of the 3 possible points for the missing vertex in a parallelogram if three of the vertices are $A(-2,-1), B(-1,3)$, and $C(4,1)$

24. The coordinates of the vertices of quadrilateral $A B C D$ are $A(-4,-2), B(-1,3), C(4,0)$, and $D(1,-5)$. Determine whether $A B C D$ is a parallelogram, a rectangle, a rhombus, or a square. Explain why or why not. Show work to support the explanations.
25. The coordinates of the vertices of quadrilateral $P Q R S$ are $P(4,4), Q(1,2), R(2,-2)$, and $S(5,0)$. Determine whether PQRS is a parallelogram, a rectangle, a rhombus, or a square. Explain why or why not. Show work to support the explanations.
26. The coordinates of the vertices of quadrilateral $W X Y Z$ are $W(5,0), X(6,-8), Y(-1,-4)$, and $Z(-2,4)$.

Determine whether $W X Y Z$ is a parallelogram, a rectangle, a rhombus, or a square. Explain why or why not. Show work to support the explanations.
28. Given $A B C D$ is a kite and $m \angle B C D=50^{\circ}, \mathrm{m} \angle 2=40^{\circ}$, and $E D=6$, find:
$\mathrm{m} \angle 8=$ \qquad
$\mathrm{m} \angle A D C=$ \qquad
$B D=$ \qquad

29. $\triangle A B C$ has midpoints D, E, and F. If the perimeter of $\triangle D E F$ is 23 , then find the perimeter of $\triangle A B C$.

30. KITE is a kite. M, N, O, and P are midpoints.

$$
\mathrm{m} \angle \mathrm{KMN}=30^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{KIT}=100^{\circ}
$$

Find: $m \angle 1=$ \qquad

$$
\mathrm{m} \angle 2=
$$

$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 4=$ \qquad

